

Review

Ethical Reflections on Human-Technology Interaction in the 21st Century

Rishikesh Mishra

Professor, School of Education Jaipur National University Jaipur, Agra Bypass, Jagatpura, Jaipur Rajasthan 302029

Corresponding Author:

Dr. Rishikesh Mishra

Email:

rishikeshmishra@jnujaipur.ac.in

n

Conflict of interest: NIL

Abstract:

The rapid advancement of technologies such as Artificial Intelligence (AI), robotics, biotechnology, and pervasive connectivity has fundamentally altered the landscape of human life, creating a new environment defined by Human–Technology Interaction (HTI). This manuscript provides a comprehensive ethical reflection on this relationship in the 21st century. It moves beyond traditional concerns of privacy and security to address emergent, complex dilemmas related to autonomy, fairness, dignity, and accountability. The paper employs ethical frameworks, including Deontology, Consequentialism, and Virtue Ethics, to analyse the moral implications of technologies that are increasingly autonomous, opaque, and persuasive. Specific attention is given to the ethical challenges posed by algorithmic bias, the threat to human agency, the nature of digital labour, and the implications of transhumanism. Ultimately, the manuscript argues for the urgent need for a robust, multidisciplinary, and anticipatory ethical governance system that prioritizes human well-being, equity, and democratic values in the design, deployment, and regulation of emerging technologies.

Keywords: Artificial Intelligence (AI), Human–Technology Interaction (HTI), Deontology, Consequentialism, and Virtue Ethics.

Article History

Received: 03/04/2025

Accepted: 22/05/2025

Published: 10/06/2025

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction: The Technologically Mediated Life

Technology has always been an extension of human capacity. However, the technologies emerging in the 21st century—characterized by machine learning, vast data processing power, and unprecedented connectivity—represent a qualitative leap. They are no longer just tools *used* by humans, but often *partners* in decision-making, *mediators* of social interaction, and *architects* of reality.

The ethical considerations arising from this intimate and complex relationship between humans and technology are paramount. Failure to address these concerns risks the erosion of fundamental human rights, the entrenchment of societal inequalities, and a loss of control over the future. [1-3]

This manuscript aims to:

1. Establish the conceptual scope of Human–Technology Interaction (HTI) ethics.
2. Analyse key ethical dilemmas across autonomy, fairness, and dignity.
3. Discuss the critical challenge of technological accountability and governance.
4. Propose principles for a humane and equitable technological future.

2. Conceptual Frameworks for HTI Ethics

Understanding the ethical challenges requires employing established philosophical frameworks to scrutinize technological impact:

Ethical Framework	Core Principle	Application in HTI Ethics
Deontology (Duty-based)	Moral actions are those that adhere to clear rules and duties, regardless of consequences.	Focuses on rights and duties , such as the duty to protect user privacy (GDPR) and the right to informed consent before data collection.
Consequentialism (Utilitarianism)	The morality of an action is judged solely by its outcomes; actions should maximize overall good/utility.	Evaluates technology based on its net societal impact (e.g., assessing if the efficiency gains of AI outweigh job losses).
Virtue Ethics	Focuses on the character of the moral agent (the designer/user) and the cultivation of virtues (e.g., integrity, compassion).	Emphasizes the need for technologists to develop moral character and design for human flourishing and societal trust.

These frameworks help us analyse the moral friction points where human values intersect with technological capabilities. [4-12]

3. Key Ethical Dilemmas in HTI

The ethical landscape is dominated by tensions in three core areas: Autonomy, Fairness, and Human Dignity.

3.1. Autonomy and Agency

Autonomy is the capacity of an individual to make self-governing choices. Technology threatens autonomy through opacity and persuasion:

- **Algorithmic Opacity:** Complex machine learning models (Deep Neural Networks) often operate as "black boxes," making their decision-making processes incomprehensible, even to their creators. This **lack of explainability** undermines the ability of individuals to understand *why* a decision (e.g., loan denial, arrest risk score) was made about them.
- **Technological Paternalism:** Recommender systems and personalized feeds are engineered to predict and influence behaviour, subtly limiting the scope of information individuals encounter. This *filter bubble* can lead to cognitive narrowing and compromise the conditions necessary for authentic, well-informed decision-making. [13-18]

3.2. Fairness, Bias, and Equity

The promise of technology is often one of objective, unbiased decision-making, yet AI systems

frequently amplify and automate existing societal biases.

- **Algorithmic Bias:** Training data, often reflecting historical and social inequalities, can lead algorithms to discriminate based on race, gender, or socioeconomic status. For example, facial recognition software has demonstrated higher error rates for darker skin tones, and hiring algorithms have shown gender bias, perpetuating systemic injustice at scale.
- **Data Exploitation and Power Imbalance:** The vast wealth generated by the 'data economy' is concentrated among a few powerful corporations. The users whose data fuels this economy are often uncompensated and have little control over how their digital lives are monetized, exacerbating the digital labour and wealth gap. [19-25]

3.3. Human Dignity and Identity

- **The Digital Self and Surveillance:** Pervasive tracking through Internet of Things (IoT) devices, social media, and biometric analysis creates a **surveillance society**. This continuous monitoring, whether by state or corporate actors, inherently challenges the sense of self, privacy, and the freedom to act without observation, infringing upon human dignity.
- **The Nature of Human Interaction:** Technologies like deepfakes and advanced

synthetic media blur the line between reality and fabrication. This erosion of trust in digital information threatens social cohesion and the shared reality upon which democratic discourse depends. [26-29]

4. Emergent Frontiers: Robotics and Biotechnology

The ethical challenges become even more acute at the cutting edge of technological integration:

4.1. Ethical Robotics and AI in Decision-Making

As robots and AI gain functional autonomy (e.g., self-driving cars, surgical robots, autonomous weapons), the question of **moral responsibility** arises.

- **The Attribution of Responsibility:** When an autonomous system causes harm, who is ethically and legally accountable: the programmer, the manufacturer, the user, or the AI itself? Traditional legal frameworks are ill-equipped for this challenge.
- **The Ethics of Care:** In healthcare or elderly care robotics, the design must reflect empathy and respect. Relying on robots for emotional labour raises concerns about de-skilling human care workers and the risk of **dehumanizing** interpersonal relationships. [30-33]

4.2. Biotechnology and Transhumanism

Genetic editing (e.g., CRISPR) and brain-computer interfaces (BCIs) promise to redefine what it means to be human, leading to the philosophical movement of **Transhumanism**.

- **Equity of Enhancement:** If only the wealthy can afford genetic or neural enhancements, technology will create a new form of biological and cognitive inequality—a 'post-human' divide—that threatens the core principle of human equality.
- **The Integrity of the Species:** Questions about germline editing (changes passed down to future generations) force humanity to consider its ethical mandate concerning the irreversible alteration of the human genome and the integrity of the species. [34]

5. Governance, Regulation, and the Way Forward

Addressing 21st-century HTI ethics requires moving from reactive control to **anticipatory governance** based on explicit ethical principles.

5.1. Principles for Ethical Design

The engineering and design process must embed ethical considerations from the outset (**Ethics-by-Design**):

- **Transparency and Explainability:** AI systems should be designed to offer clear explanations for their outputs whenever possible (The Right to Explanation).
- **Contestability and Auditability:** Users must have mechanisms to challenge algorithmic decisions, and algorithms should be subject to independent ethical audits.
- **Human Oversight and Control:** Technologies should always allow for meaningful human intervention or "human-in-the-loop" systems, ensuring the ultimate authority rests with humans.

5.2. Policy and Regulatory Mechanisms

- **International Harmonization:** Technology is borderless, necessitating international cooperation to set common standards for data privacy, AI bias mitigation, and the non-proliferation of autonomous weapons.
- **Multidisciplinary Ethical Review:** Governments and corporations should mandate independent ethical review boards, composed of ethicists, social scientists, lawyers, and technologists, before the large-scale deployment of critical technologies.

5.3. Ethical Education and Literacy

Digital and ethical literacy must become core components of contemporary education. Citizens need to understand how algorithms work, how their data is used, and how to critically engage with technologically mediated realities to ensure genuine autonomy and democratic participation. [35]

6. Conclusion: The Stewardship of Technology

The 21st century marks a turning point where humanity must consciously decide the character of its relationship with technology. The choices made today will determine whether new technologies serve as tools for human flourishing, equity, and democracy, or as instruments for control, inequality, and the erosion of dignity.

Ethical reflection on Human–Technology Interaction is not a constraint on innovation but a **necessary foundation for sustainable and humane progress**. It requires a collective commitment from technologists, policymakers, academics, and the public to become responsible stewards of this powerful technological age, prioritizing human values above all else.

References:

1. Mandal S, Singh AP. Development and In-Vitro Characterization of Gentamycin Sulphate Nanoemulgel for Ophthalmic Applications. *International Journal of Drug Delivery Technology*. 2024;14(4):2347-58. doi: 10.25258/ijddt.14.4.56
2. Suraj Mandal, Murraya koenigii: A Source of Bioactive Compounds for Inflammation and Pain Management, Current Bioactive Compounds; Volume 21, Issue , Year 2025, e15734072348822. DOI: 10.2174/011573407234882250324073439
3. Jiyaul Hak, Iram Jahan, Nasiruddin Ahmad Farooqui, Atul Pratap Singh, Himanchal Sharma, Smriti Gohri, Anshu Gujjar, Suraj Mandal, Nanochips in the Field of Oncology: Advancements and Potential for Enhanced Cancer Therapy, Current Cancer Therapy Reviews; Volume 21, Issue , Year 2025, e15733947343855. DOI: 10.2174/0115733947343855241230115820
4. Iram Jahan, Jiyaul Hak, Suraj Mandal, Shadab Ali, Sayad Ahad Ali, Nasiruddin Ahmad Farooqui, Isoquinoline Quaternary Alkaloid (IQA) Nano-dressings: A Comprehensive Review on Design Strategies, Therapeutic Applications, and Advancements in Transdermal Delivery for Chronic Wound Management, Recent Advances in Drug Delivery and Formulation; Volume 19, Issue , Year 2025, e26673878330005. DOI: 10.2174/0126673878330005250326060103
5. Mandal S, Vishvakarma P. Nanoemulgel: A Smarter Topical Lipidic Emulsion-based Nanocarrier. *Indian J of Pharmaceutical Education and Research*. 2023;57(3s):s481-s498.
6. Mritunjay Kumar Ojha, Nalluri Satish Kumar, Umesh Kumar Sharma, Prakash Gadipelli, Suraj Mandal, Farah Deeba, Monalisa Khuntia, Hariballav Mahapatra (2024) Exploring the Potential of Artificial Intelligence in Optimizing Clinical Trial Design for More Efficient Drug Development. *Library Progress International*, 44(3), 9498-9510.
7. Mandal S, Jaiswal DV, Shiva K. A review on marketed Carica papaya leaf extract (CPLE) supplements for the treatment of dengue fever with thrombocytopenia and its drawback. *International Journal of Pharmaceutical Research*. 2020 Jul;12(3).
8. Mandal S, Bhumika K, Kumar M, Hak J, Vishvakarma P, Sharma UK. A Novel Approach on Micro Sponges Drug Delivery System: Method of Preparations, Application, and its Future Prospective. *Indian J of Pharmaceutical Education and Research*. 2024;58(1):45-63.
9. Mandal S, Vishvakarma P, Bhumika K. Developments in Emerging Topical Drug Delivery Systems for Ocular Disorders. *Curr Drug Res Rev*. 2023 Dec 29. doi: 10.2174/0125899775266634231213044704. Epub ahead of print. PMID: 38158868.
10. Bhandari S, Chauhan B, Gupta N, et al. Translational Implications of Neuronal Dopamine D3 Receptors for Preclinical Research and Cns Disorders. *African J Biol Sci (South Africa)*. 2024;6(8):128-140. doi:10.33472/AFJBS.6.8.2024.128-140
11. Tripathi A, Gupta N, Chauhan B, et al. Investigation of the structural and functional properties of starch-g-poly (acrylic acid) hydrogels reinforced with cellulose nanofibers for cu²⁺ ion adsorption. *African J Biol Sci (South Africa)*. 2024;6(8): 144-153, doi:10.33472/AFJBS.6.8.2024.141-153
12. Sharma R, Kar NR, Ahmad M, et al. Exploring the molecular dynamics of ethyl alcohol: Development of a comprehensive model for understanding its behavior in various environments. *Community Pract*. 2024;21(05):1812-1826. doi:10.5281/zenodo.11399708
13. Mandal S, Kar NR, Jain AV, Yadav P. Natural Products As Sources of Drug Discovery: Exploration, Optimisation, and Translation Into Clinical Practice. *African J Biol Sci (South Africa)*. 2024;6(9):2486-2504. doi:10.33472/AFJBS.6.9.2024.2486-2504

14. Kumar S, Mandal S, Priya N, et al. Modeling the synthesis and kinetics of Ferrous Sulfate production: Towards Sustainable Manufacturing Processes. *African J Biol Sci (South Africa)*. 2024;6(9):2444-2458. doi:10.33472/AFJBS.6.9.2024.

15. Revadigar RV, Keshamma E, Ahmad M, et al. Antioxidant Potential of Pyrazolines Synthesized Via Green Chemistry Methods. *African J Biol Sci (South Africa)*. 2024;6(10):112-125. doi:10.33472/AFJBS.6.10.2024.112-125

16. Sahoo S, Gupta S, Chakraborty S, et al. Designing, Synthesizing, and Assessing the Biological Activity of Innovative Thiazolidinedione Derivatives With Dual Functionality. *African J Biol Sci (South Africa)*. 2024;6(10):97-111. doi:10.33472/AFJBS.6.10.2024.97-111

17. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type II Diabetes Mellitus Management: A Pharmaceutical Perspective. *Community Practitioner*, 21(2), 29–37. <https://doi.org/10.5281/zenodo.10642768>

18. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Its Optimized Formulation and Anti-Acne Potential Against Propionibacterium Acnes, Staphylococcus Aureus, and Staphylococcus Epidermidis Bacteria. *Community Practitioner*, 21(1), 102–115. <https://doi.org/10.5281/zenodo.10570746>

19. Khalilullah, H., Balan, P., Jain, A. V., & Mandal, S. (n.d.). Eupatorium Rebaudianum Bertoni (Stevia): Investigating Its Anti-Inflammatory Potential Via Cyclooxygenase and Lipoxygenase Enzyme Inhibition - A Comprehensive Molecular Docking And ADMET. *Community Practitioner*, 21(03), 118–128. <https://doi.org/10.5281/zenodo.10811642>

20. Mandal, S. Vishvakarma, P. Pande M.S., Gentamicin Sulphate Based Ophthalmic Nanoemulgel: Formulation and Evaluation, Unravelling A Paradigm Shift in Novel Pharmaceutical Delivery Systems. *Community Practitioner*, 21(03), 173-211. <https://doi.org/10.5281/zenodo.10811540>

21. Mishra, N., Alagusundaram, M., Sinha, A., Jain, A. V., Kenia, H., Mandal, S., & Sharma, M. (2024). Analytical Method, Development and Validation for Evaluating Repaglinide Efficacy in Type II Diabetes Mellitus Management: A Pharmaceutical Perspective. *Community Practitioner*, 21(2), 29–37. <https://doi.org/10.5281/zenodo.10642768>

22. Singh, M., Aparna, T. N., Vasanthi, S., Mandal, S., Nemade, L. S., Bali, S., & Kar, N. R. (2024). Enhancement and Evaluation of Soursop (Annona Muricata L.) Leaf Extract in Nanoemulgel: a Comprehensive Study Investigating Its Optimized Formulation and Anti-Acne Potential Against Propionibacterium Acnes, Staphylococcus Aureus, and Staphylococcus Epidermidis Bacteria. *Community Practitioner*, 21(1), 102–115. <https://doi.org/10.5281/zenodo.10570746>

23. Gupta, N., Negi, P., Joshi, N., Gadielli, P., Bhumika, K., Aijaz, M., Singhal, P. K., Shami, M., Gupta, A., & Mandal, S. (2024). Assessment of Immunomodulatory Activity in Swiss Albino Rats Utilizing a Poly-Herbal Formulation: A Comprehensive Study on Immunological Response Modulation. *Community Practitioner*, 21(3), 553–571. <https://doi.org/10.5281/zenodo.10963801>

24. Abdul Rasheed. A. R. K. Sowmiya, S. N., & Suraj Mandal, Surya Pratap Singh, Habibullah Khallullah, N. P. and D. K. E. (2024). In Silico Docking Analysis of Phytochemical Constituents from Traditional Medicinal Plants: Unveiling Potential Anxiolytic Activity Against Gaba, *Community Practitioner*, 21(04), 1322–1337. <https://doi.org/10.5281/zenodo.11076471>

25. Pal N, Mandal S, Shiva K, Kumar B. Pharmacognostical, Phytochemical and Pharmacological Evaluation of *Mallotus philippensis*. *Journal of Drug Delivery and Therapeutics*. 2022 Sep 20;12(5):175-81.

26. Singh A, Mandal S. Ajwain (Trachyspermum ammi Linn): A review on Tremendous Herbal Plant with Various Pharmacological Activity. *International Journal of Recent Advances in*

Multidisciplinary Topics. 2021 Jun 9;2(6):36-8.

27. Mandal S, Jaiswal V, Sagar MK, Kumar S. Formulation and evaluation of carica papaya nanoemulsion for treatment of dengue and thrombocytopenia. Plant Arch. 2021;21:1345-54.

28. Mandal S, Shiva K, Kumar KP, Goel S, Patel RK, Sharma S, Chaudhary R, Bhati A, Pal N, Dixit AK. Ocular drug delivery system (ODDS): Exploration the challenges and approaches to improve ODDS. Journal of Pharmaceutical and Biological Sciences. 2021 Jul 1;9(2):88-94.

29. Shiva K, Mandal S, Kumar S. Formulation and evaluation of topical antifungal gel of fluconazole using aloe vera gel. Int J Sci Res Develop. 2021;1:187-93.

30. Ali S, Farooqui NA, Ahmad S, Salman M, Mandal S. Catharanthus roseus (sadabahar): a brief study on medicinal plant having different pharmacological activities. Plant Archives. 2021;21(2):556-9.

31. Mandal S, Vishvakarma P, Verma M, Alam MS, Agrawal A, Mishra A. Solanum Nigrum Linn: An Analysis Of The Medicinal Properties Of The Plant. Journal of Pharmaceutical Negative Results. 2023 Jan 1:1595-600.

32. Vishvakarma P, Mandal S, Pandey J, Bhatt AK, Banerjee VB, Gupta JK. An Analysis Of The Most Recent Trends In Flavoring Herbal Medicines In Today's Market. Journal of Pharmaceutical Negative Results. 2022 Dec 31:9189-98.

33. Mandal S, Vishvakarma P, Mandal S. Future Aspects And Applications Of Nanoemulgel Formulation For Topical Lipophilic Drug Delivery. European Journal of Molecular & Clinical Medicine.;10(01):2023.

34. Vishvakarma P, Kumari R, Vanmathi SM, Korni RD, Bhattacharya V, Jesudasan RE, Mandal S. Oral Delivery of Peptide and Protein Therapeutics: Challenges And Strategies. Journal of Experimental Zoology India. 2023 Jul 1;26(2).

35. Mandal, S., Tyagi, P., Jain, A. V., & Yadav, P. (n.d.). Advanced Formulation and Comprehensive Pharmacological Evaluation of a Novel Topical Drug Delivery System for the Management and Therapeutic Intervention of Tinea Cruris (Jock Itch). Journal of Nursing, 71(03). <https://doi.org/10.5281/zenodo.10811676>
