

Review

Project-Based Entrepreneurial Learning (PBEL): A Blended Model for Startup Creation in Higher Education Institutions

Pravin Badhe

Swalife Biotech Ltd, North Point House, North Point Business Park, Cork (Republic of Ireland)

Corresponding Author:

Dr Pravin Badhe

Email:

drpravinbadhe@swalifebiotech.com

DOI:

<https://doi.org/10.62896/ijhsbm.v2.i1.02>

Conflict of interest: NIL

Abstract

Project-Based Entrepreneurial Learning (PBEL) represents an integrated pedagogical approach combining project-based learning with blended delivery (online and face-to-face instruction) to support startup creation within higher education institutions. This review synthesizes evidence from empirical studies and institutional case studies to examine PBEL's effectiveness, implementation mechanisms, and outcomes. PBEL integrates real-world startup projects, digital platforms, structured mentoring from faculty and industry experts, and incubation infrastructure to develop entrepreneurial competencies and support venture development across multiple stages: ideation, validation, prototyping, and scaling. Evidence demonstrates that PBEL significantly enhances entrepreneurial intentions, develops critical competencies, and supports startup creation, with participating students showing higher entrepreneurial intention compared to traditional lecture-based approaches. However, persistent challenges include curriculum design integration, faculty development requirements, resource constraints, and the fundamental difficulty of ensuring startup sustainability beyond the institutional support period. Future research priorities include longitudinal tracking of venture outcomes, comparative analysis of pedagogical models, and investigation of emerging technologies for scaling PBEL effectiveness. PBEL contributes substantially to transforming entrepreneurship education through systematic integration of experiential learning with institutional support ecosystems.

Keywords: entrepreneurship education, project-based learning, blended learning, startup creation, higher education, experiential learning

Article History

Received: 15/12/2025

Accepted: 20/12/2025

Published: 08/01/2025

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

1. Introduction

Entrepreneurship education has become a critical component of higher education development worldwide, driven by the recognition that entrepreneurship serves as a catalyst for economic development, job creation, and innovation. The traditional lecture-based approach to entrepreneurship education, however, faces significant limitations in developing the practical competencies and experiential understanding that students require to successfully launch and sustain new ventures. These conventional teaching methods emphasize theoretical knowledge

transfer over the development of the entrepreneurial mindset, risk management capabilities, and interpersonal skills that characterize successful entrepreneurs.^{[1][2]}

The emergence of project-based learning (PBL) in business education has offered a more effective pedagogical alternative, emphasizing active student engagement with real-world challenges and authentic problem-solving scenarios. Simultaneously, the integration of blended learning models combining online and face-to-face instruction has expanded educational accessibility while enabling the

personalized guidance and mentorship essential to entrepreneurial development. The convergence of these pedagogical approaches has given rise to Project-Based Entrepreneurial Learning (PBEL), a comprehensive educational framework that leverages digital tools, structured mentoring, and real-world startup projects to cultivate entrepreneurial capabilities within higher education institutions.^{[3][4]}

This review examines PBEL as an innovative blended model specifically designed to support startup creation in higher education contexts. The synthesis addresses how PBEL integrates the strengths of project-based methodologies with blended learning delivery systems, explores the mechanisms through which institutional support structures facilitate student venture development, and identifies both the demonstrated outcomes and persistent implementation challenges. Additionally, the review identifies critical gaps in current research, particularly regarding longitudinal tracking of startup sustainability and the role of emerging technologies in scaling entrepreneurship education.

Purpose, Scope, and Significance: This review synthesizes evidence from empirical studies, program evaluations, and institutional case studies to provide a comprehensive understanding of PBEL implementation, outcomes, and future directions. The scope encompasses higher education institutions globally, with particular attention to factors influencing effective curriculum design, faculty development, institutional support mechanisms, and student outcomes. The significance of this review lies in its systematic examination of how integrated pedagogical approaches can better prepare students for entrepreneurial endeavors while contributing to institutional innovation ecosystems and regional economic development.

2. Conceptual Foundations

2.1 Entrepreneurship Education in Higher Education

Definitions and Evolution: Entrepreneurship education in higher education has evolved significantly from its early conceptualization as business administration training to a multidisciplinary field focused on cultivating entrepreneurial thinking, capabilities, and behaviors. Contemporary definitions recognize entrepreneurship education as a comprehensive process that develops knowledge,

attitudes, and skills enabling individuals to recognize opportunities, create ventures, and navigate the complexities of business creation and growth. The evolution reflects a fundamental shift from teaching *about* entrepreneurship emphasizing theoretical frameworks and business concepts to teaching *for* entrepreneurship, which involves experiential engagement with actual venture development.^{[5][6][7]}

Entrepreneurial Competencies and Mindset Development: Research has established a comprehensive framework of entrepreneurial competencies essential for success in venture creation. These competencies extend beyond technical business knowledge to include psychological attributes (self-efficacy, resilience, risk appetite), behavioral capabilities (opportunity recognition, strategic planning, resource management), and social competencies (networking, communication, team leadership). Entrepreneurial competency development emphasizes the cultivation of an entrepreneurial mindset characterized by creative problem-solving, calculated risk-taking, comfort with ambiguity, and an iterative learning orientation. Evidence demonstrates that entrepreneurship education significantly moderates the relationship between self-efficacy and entrepreneurial competency development, with cognitive flexibility, knowledge transfer, and self-efficacy serving as key mediating mechanisms. The development of these competencies is contingent upon pedagogical approaches that provide students with experiential opportunities rather than passive knowledge acquisition.^{[8][9][10]}

2.2 Project-Based Learning (PBL)

Core Principles and Theoretical Grounding: Project-based learning represents a pedagogical approach centered on the use of authentic projects as the primary teaching mechanism, positioning students as active agents in the learning process rather than passive recipients of information. The theoretical foundations of PBL draw from constructivist learning theory, which posits that knowledge is actively constructed through experience rather than transmitted through direct instruction. PBL is organized around a driving question that can only be answered through sustained investigation, creative problem-solving, and project development by students. Research consistently demonstrates that students engaged in project-based learning exhibit greater intrinsic motivation for

learning, demonstrate greater autonomy in their educational pursuits, develop enhanced metacognitive skills, and display greater self-sufficiency compared to students in traditional instructional models.^{[11][12]}

Application in Business and Entrepreneurship Education:

Within entrepreneurship education contexts, PBL manifests in multiple configurations, each targeting different dimensions of venture development. Empirical evidence identifies three primary applications: project-based learning focused on business development, where students create and launch actual enterprises; project-based learning oriented toward product development, emphasizing innovation and market validation; and project-based learning structured around business consulting, where students provide services to external organizations. The application of PBL in entrepreneurship education develops transferable competencies including effective time management, interpersonal communication and feedback integration, teamwork and task coordination, technical competencies including storytelling with digital tools, and practical business management capabilities. By engaging students in the full entrepreneurial process from ideation through implementation PBL creates learning environments where abstract business concepts become tangible and directly applicable to students' ventures.^{[13][11]}

2.3 Blended Learning Models

Definition and Key Components: Blended learning represents the integration of online and face-to-face instructional delivery, utilizing digital platforms and resources to extend learning beyond the traditional classroom while maintaining the interpersonal interactions and mentoring essential to complex skill development. Blended learning models combine asynchronous online elements including video lectures, discussion forums, self-paced modules, and digital resource repositories with synchronous face-to-face interactions including workshops, mentoring sessions, collaborative projects, and demonstration-based learning. This integration aims to leverage the strengths of each modality: online components provide flexibility, accessibility, and scalability, while face-to-face interactions enable real-time feedback, relationship development, and nuanced mentoring particularly critical in entrepreneurship education.^{[14][15]}

Pedagogical Benefits and Challenges: Blended learning delivers distinct pedagogical advantages for

entrepreneurship education. Students benefit from flexible learning schedules accommodating simultaneous venture development and coursework, individualized learning pathways tailored to specific venture needs and student backgrounds, and access to diverse learning resources and expertise distributed across digital and in-person platforms. Comparative research on instructional delivery modes reveals that blended and face-to-face formats significantly outperform purely online delivery for skills requiring sensory learning and hands-on practice, with blended formats achieving 89% competency attainment compared to 17% in online-only contexts. Students report higher confidence in applying learned skills in real-world settings when instruction combines digital content with face-to-face mentoring and feedback. However, challenges persist in blended learning implementation, including the need for faculty digital literacy and instructional design capabilities, the infrastructure requirements for synchronous learning coordination, student-reported concerns about technology dependence, and the complexity of assessing competencies across distributed learning environments. The effectiveness of blended learning for entrepreneurship education is contingent upon thoughtful integration of pedagogical approaches rather than additive combination of online and face-to-face elements.^{[16][17][18]}

3. Project-Based Entrepreneurial Learning (PBEL)

Definition and Distinguishing Features: Project-Based Entrepreneurial Learning (PBEL) represents an integrated educational approach that unites project-based learning methodologies with blended delivery systems to support student-led venture creation within higher education contexts. PBEL is distinguished by several defining characteristics: students engage with real-world startup projects rather than hypothetical business cases; learning is structured around the authentic challenges and decisions inherent in actual venture development; instruction combines online resources and asynchronous learning with intensive face-to-face mentoring and feedback; and external stakeholders including industry experts, investors, and incubators participate actively in the learning process and venture support. The approach emphasizes the integration of theoretical business knowledge with practical application, requiring students to simultaneously acquire entrepreneurial competencies

and develop market-ready ventures. PBEL deliberately structures learning to replicate the conditions of actual entrepreneurship, including managing under uncertainty, making decisions with incomplete information, navigating team dynamics, and iterating based on market feedback.^{[19][20][21]}

Comparison with PBL and Experiential Learning:

While PBEL incorporates project-based learning and experiential learning principles, it distinctively emphasizes the blended delivery model and the integration of institutional and external support systems. Traditional experiential learning in entrepreneurship contexts often relies on learning-by-doing within unstructured environments or informal mentoring arrangements, potentially leaving students without systematized knowledge frameworks or institutional scaffolding. Project-based learning in other disciplinary contexts frequently maintains a clear separation between academic instruction and application, with projects serving as summative assessment mechanisms rather than the organizing principle of the curriculum. PBEL differs by positioning the student startup project as the central organizing focus of all learning activities, with instruction deliberately structured to address the specific challenges the startup team confronts in real time. The blended delivery model distinguishes PBEL from purely experiential models by providing structured online learning content, formalized feedback mechanisms, and systematic assessment while maintaining the interpersonal mentoring and peer collaboration essential to entrepreneurial development.^{[22][23][24][25]}

Role of Real-World Startup Projects and Industry Engagement:

The centerpiece of PBEL is the requirement that students develop actual startup ventures rather than business plans or case analyses. This commitment to real venture creation serves multiple pedagogical functions: it creates authentic motivation and accountability for learning, as student-led ventures face genuine market tests; it requires students to synthesize diverse knowledge domains (finance, marketing, operations, product development) in service of a specific business challenge; and it generates actionable feedback from customers, competitors, and market conditions that informs iterative learning. Industry engagement in PBEL manifests through multiple mechanisms: industry

professionals serve as mentors providing market expertise and entrepreneurial wisdom; investors and venture capitalists participate in evaluation and selection processes; established businesses provide partnership opportunities and customer validation; and institutional incubators and accelerators provide infrastructure, funding, and network access. This engagement creates what has been characterized as a "sandbox for experimentation," where students can test ventures in a supportive environment with extended timeline and mentoring support before launching independent of the institution. Evidence indicates that university-affiliated incubators produce superior outcomes compared to private sector incubators, with startups from university incubators creating more jobs and achieving higher sales than comparable private and non-profit sector counterparts, suggesting that the institutional support infrastructure and accumulated expertise create meaningful advantages.^{[20][26]}

4. PBEL as a Blended Model for Startup Creation

Integration of Digital Tools, Online Platforms, and In-Person Mentoring: PBEL leverages a diverse ecosystem of digital tools and platforms to extend learning support while maintaining intensive face-to-face mentoring essential to startup development. Online platforms typically include learning management systems (LMS) for course content, discussion forums for asynchronous collaboration, and digital libraries of entrepreneurial resources, case studies, and business templates. Specialized platforms provide business simulation games enabling students to experience high-pressure decision-making scenarios, develop strategic thinking, and practice resource allocation in realistic conditions. Virtual bootcamps structured as synchronous online cohort experiences combine instructional content with real-time interaction and team work facilitation. Complementing digital platforms, in-person mentoring remains central to PBEL, with students receiving regular feedback from faculty advisors, industry mentors, and investor mentors, with quantified implementation data showing approximately 270 mentor sessions annually for large-scale programs. The integration achieves what has been described as "a hybrid structure" where theory and practice run in parallel, with classroom modules coexisting with live business-building labs where ventures are actively developed and tested against market realities. This integration requires deliberate

synchronization between online content modules and face-to-face mentoring sessions, ensuring that digital learning directly addresses challenges students encounter in their ventures.^{[27][28][29][30]}

Stages of Startup Development Within PBEL: PBEL structures the entrepreneurial journey through distinct developmental stages, each with specific learning objectives and support mechanisms. The **ideation stage** focuses on opportunity recognition, idea validation, and team formation, supported through workshops on opportunity assessment, customer discovery, and competitive analysis. Students typically engage in rapid idea generation, validation interviews with potential customers, and iterative refinement of value propositions. The **validation stage** emphasizes customer research, market size estimation, and proof-of-concept development. Students conduct extensive customer interviews, develop and test minimum viable products (MVPs), and gather market data validating demand for their proposed solutions. This stage critically determines whether ventures proceed or pivot based on market feedback. The **prototyping stage** involves developing functional products or service delivery systems, establishing initial business operations, and beginning to engage actual customers or early adopters. Students typically work with incubation centers or maker spaces to develop physical or digital prototypes, establish operational processes, and conduct pilot testing. The **scaling stage** addresses growth strategy, fundraising, organizational development, and expansion planning. Students may seek institutional seed funding, external venture capital, or revenue-based financing while simultaneously developing management systems, hiring decisions, and market expansion strategies. Each stage integrates specific pedagogical content, mentoring focus, and external partnership engagement aligned with the venture's developmental requirements.^{[29][31][32]}

Role of Faculty, Mentors, Incubators, and External Stakeholders: Successful PBEL implementation requires a multifaceted support ecosystem with clearly defined roles for diverse stakeholders. **Faculty members** serve as course instructors, project advisors, and bridge-builders between academic knowledge and venture needs, requiring development in entrepreneurial pedagogy and contemporary business practices. Faculty development programs address entrepreneurship-specific pedagogical methods (case-

based learning, simulations, live projects), practical business knowledge, mentoring skills, and connections to entrepreneur and investor networks. **Mentor mentors** from industry, either working directly with the institution or partnering through external networks, provide domain expertise, market insights, reality-based feedback on ventures, and connections to customers, suppliers, and investors. Research indicates that effective mentoring relationships require structured interaction (formalized meeting schedules, defined mentor responsibilities) coupled with relationship flexibility and mentor investment in venture success.^{[33][34][29]}

Incubation centers function as institutional infrastructure providing physical workspace, technology resources, administrative support, access to service providers (legal, accounting, technical), and program administration for cohort-based acceleration. Research documenting incubator impact indicates that incubation centers dramatically expand the capability of B-School graduates and student entrepreneurs to establish prosperous enterprises by providing practical advice, mentorship, information sharing, market access, and investor connections, ultimately fostering resilience and confidence in navigating entrepreneurship complexity.^{[26][35]}

External stakeholders including angel investors, venture capitalists, established corporations, government agencies, and industry associations play multiple roles. Investors participate in pitch events, provide feedback on business viability, and potentially fund ventures; established corporations may serve as customers, partners, or pilot sites for innovations; government agencies may provide funding, policy support, or regulatory guidance; and industry associations provide networking, professional development, and market intelligence. The coordination of these diverse stakeholders requires institutional leadership clarity on strategic priorities, transparent communication channels, and mechanisms ensuring alignment between educational outcomes and support ecosystem functions.^[36]

5. Outcomes of PBEL in Higher Education

Impact on Students' Entrepreneurial Skills, Intentions, and Employability: Empirical research documents significant impacts of PBEL-aligned programs on multiple dimensions of student development. Students demonstrate substantial gains in

entrepreneurial competencies, with research employing structural equation modeling indicating strong relationships between participation in project-based and action-learning approaches and the development of opportunity identification, strategic planning, resource management, and team leadership capabilities. Entrepreneurial intentions the stated likelihood of starting businesses within defined timeframes increase significantly for students participating in practice-oriented entrepreneurship programs compared to theory-oriented approaches. Comparative analysis reveals that action-learning methods (encompassing project-based and experiential learning) produce higher entrepreneurial intention than traditional classroom teaching methods, with effect sizes indicating meaningful practical significance. Beyond venture creation, PBEL supports broader employability through development of transferable competencies highly valued in contemporary labor markets, including innovation capability, adaptive problem-solving, cross-functional collaboration, and digital literacy.^{[37][38][39][40]} The specific mechanisms through which PBEL impacts intentions and skills operate through multiple pathways: entrepreneurial self-efficacy the belief in one's capability to successfully create and manage ventures serves as a key mediating variable between educational participation and entrepreneurial intention; perceived barriers to entrepreneurship, including concerns about funding, market knowledge, and personal capability, are significantly reduced through sustained exposure to real venture development; and exposure to role models (mentors, peer entrepreneurs, and faculty with industry experience) normalizes entrepreneurial career trajectories and transmits practical wisdom regarding entrepreneurial challenges and strategies.^[41]

Evidence of Startup Creation and Sustainability: Institutional data from universities operating integrated PBEL programs document substantial startup creation, with major programs incubating between 50 and 170 startups over multiple years across diverse sectors. These startups span traditional business domains (FMCG, retail, art and craft, services) and emerging innovation domains (education technology, sustainable products, social enterprises). Gender diversity in entrepreneurship improves notably through deliberate program design, with some institutions reporting

women representing 50% of startup founders despite historical gender disparities in entrepreneurship.^[29]

However, data on startup sustainability reveals the persistent challenge of new venture viability. Administrative data tracking startup cohorts over extended periods documents that approximately 47% of startups survive two years and only 33% survive five years, with no industries demonstrating immunity from this high failure rate. Even among selected cohorts of higher-potential startups receiving intensive institutional support, survival rates reach only 45% at five years, suggesting that while institutional support improves venture development, it cannot fundamentally alter the challenging economics of new venture creation. For surviving startups, employment growth progresses gradually from 1.3 employees in the founding year to 1.9 employees five years post-startup and 2.0 employees seven years post-startup, documenting the typical trajectory of small business growth.^[42]

A critical distinction exists between startup survival rates and the impact of PBEL on human capital. Even ventures that ultimately fail create substantial value in the educational experience, developing student capabilities in decision-making under uncertainty, iterative problem-solving, resilience through setback, and self-awareness regarding entrepreneurial orientation. Research comparing entrepreneurship education outcomes indicates that while the entrepreneurship education degree program significantly enhanced students' attitudes toward entrepreneurship, it did not significantly impact entrepreneurial intentions, suggesting that effective programming must address intention alongside attitude development.^{[43][44]}

Institutional and Societal Benefits: Beyond direct student outcomes, PBEL creates broader institutional and societal benefits. Universities operating incubators and PBEL programs enhance institutional innovation capacity and reputation, positioning institutions as contributors to regional economic development and entrepreneurial ecosystem development. Institutional benefit accrues through enhanced engagement with industry and community stakeholders, development of faculty expertise in applied domains, and generation of intellectual property from student ventures. Societal benefits include job creation from student-launched ventures (averaging 3.0 million jobs in the first year

across startup cohorts), development of innovative solutions addressing societal challenges through social enterprises, and cultivation of an entrepreneurial mindset among the broader student population. Research on India's university-based incubators documents over 270 mentor sessions annually with incubated ventures, plus sensitization of 54,000 students through awareness programs, demonstrating the scaling of entrepreneurial culture beyond founders to broader student communities.^{[45][42][29]}

6. Challenges and Implementation Barriers

Curriculum Design and Assessment Issues: Despite demonstrated benefits, significant challenges persist in PBEL implementation. Curriculum design challenges emerge from the inherent tension between standardized degree program structures and the individualized, venture-specific learning pathways required by PBEL. Traditional curriculum frameworks typically specify fixed course sequences, uniform learning outcomes, and standard assessment mechanisms incompatible with ventures developing on heterogeneous timelines with distinct requirements. Faculty struggle to balance entrepreneurship-specific competency development (opportunity recognition, business model innovation, financial management) with general business education requirements (accounting, strategy, operations). Assessment in PBEL contexts presents particular difficulties, as traditional assessment mechanisms (exams, written assignments) poorly capture entrepreneurial competencies (resilience, creativity, decision-making capability). Program evaluation methodologies have evolved to employ triangulated measurement approaches incorporating entrepreneurial competencies, perceived barriers reduction, and entrepreneurial intention shifts as multiple indicators of effectiveness rather than relying on single metrics.^{[46][47]}

Faculty Readiness and Institutional Support: Faculty development emerges as a critical bottleneck in PBEL implementation. Successful PBEL instruction requires faculty capabilities beyond traditional business education, including authentic business or startup experience, mentoring and coaching capabilities, comfort with uncertainty and ambiguity, and ability to facilitate rather than direct learning. Many faculty hired into traditional business school roles lack this background and require substantial professional development to transition to entrepreneurship-focused

pedagogy. Institutional resource constraints frequently limit faculty professional development, with institutions unable to allocate significant funding for specialized training programs, conference attendance, or sabbaticals for industry experience. Additionally, institutional reward structures historically prioritized research over teaching innovation, creating insufficient incentives for faculty to invest effort in developing new pedagogical approaches or integrating ventures into curriculum.^{[48][49]}

Resource, Scalability, and Evaluation Challenges:

Resource constraints represent a fundamental implementation barrier across higher education contexts. PBEL programs require substantial financial investment in incubation infrastructure (physical workspace, technology, administrative support), mentor recruitment and coordination, student funding to support ventures, and faculty development. Institutions compete for limited government and philanthropic funding for entrepreneurship education, with developing country institutions facing particularly acute constraints. Scalability presents another dimension of the resource challenge: while small cohort programs (20-30 students per year) are highly manageable with intensive mentoring and customized support, scaling to serve hundreds or thousands of students requires systematization that may reduce the personalized mentoring considered essential to entrepreneurial development.^{[50][51]}

Evaluation challenges stem from the complexity of measuring long-term impacts and attributing outcomes to program participation. Most evaluation frameworks capture short-term outcomes (entrepreneurial intention, competency development, startup launch) rather than long-term success indicators (venture survival, revenue generation, employment creation). Longitudinal studies tracking student cohorts over extended periods remain scarce, limiting understanding of how PBEL participation influences entrepreneurial outcomes 5-10 years post-program. Confounding variables complicate attribution, including selection effects (more entrepreneurially inclined students may self-select into programs), external support from family and networks, and macroeconomic conditions influencing venture success.^{[52][53][54]}

7. Future Directions and Research Gaps

Need for Longitudinal and Comparative Studies: Current research limitations create pressing needs for

methodologically rigorous longitudinal studies tracking student entrepreneurs across extended time periods. Longitudinal research should follow student cohorts for minimum 5-10 years post-graduation, documenting startup outcomes (survival, revenue, growth, employment), subsequent career trajectories of non-founders, and comparison with comparable peers not participating in PBEL programs. Comparative studies should examine outcomes across diverse PBEL models, institutional contexts, and geographic regions, documenting which program design features most effectively support startup creation and venture sustainability. Research should disaggregate outcomes by startup sector, team composition, student background, and startup trajectories (organic growth, acquisition, shutdown) to develop nuanced understanding of program effectiveness across heterogeneous contexts.^{[55][56]}

Digital Transformation and AI-Enabled

Entrepreneurship Learning: Emerging technological capabilities create opportunities for advancing entrepreneurship education through AI-enabled and digitally-enhanced learning platforms. Artificial intelligence applications including predictive analytics for venture viability assessment, personalized learning pathways adapting to individual student needs, virtual mentors providing 24/7 guidance, and market simulation systems of increasing sophistication offer potential to enhance PBEL scalability and personalization. Digital technologies including virtual reality for experiential business simulations, blockchain-based platforms for venture credentialing and investor connection, and digital twins for testing business models at low cost represent underexplored opportunities for entrepreneurship education. However, research is needed to establish evidence on the impact of these technologies on learning outcomes, their effectiveness compared to human mentoring, the opportunity costs of digital substitution, and the equity implications of technology-dependent learning systems.^{[57][58][59]}

Policy and Institutional Implications: Research gaps exist regarding optimal policy frameworks supporting PBEL implementation and scaling. Evidence-based guidance is needed on institutional policies supporting student venture development (intellectual property ownership, liability frameworks, academic credit for entrepreneurial projects), funding mechanisms

sustaining entrepreneurship programs, regulatory frameworks supporting student-founded startups (labor law, insurance, tax treatment), and strategic coordination across institutional units (academic programs, business schools, incubators, career services). Comparative institutional analysis examining successful PBEL implementation across diverse organizational contexts would inform understanding of necessary conditions for program success and adaptation requirements for different institutional types. Research on innovation ecosystems and startup ecosystem development indicates the complex interdependencies between educational institutions, funding sources, mentors, customers, and infrastructure supporting entrepreneur success, yet few studies examine how institutional PBEL programs strategically position within and contribute to these broader ecosystems.

8. Conclusion

Project-Based Entrepreneurial Learning represents a promising and increasingly practiced approach to supporting startup creation within higher education institutions. By integrating project-based learning methodologies with blended delivery systems, PBEL bridges the longstanding gap between entrepreneurship education emphasizing theoretical knowledge and the practical experiential learning required for successful venture development. The synthesis of evidence presented in this review demonstrates that PBEL effectively develops entrepreneurial competencies, supports startup creation, and generates broader institutional and societal benefits through job creation, innovation, and development of entrepreneurial mindsets across student populations.

The distinctive contribution of PBEL lies in its systematic integration of real-world venture development (providing authentic motivation and market feedback), blended learning delivery (balancing digital accessibility with personalized mentoring), and coordinated institutional support ecosystems (combining faculty instruction, industry mentorship, and incubation infrastructure). Research documents significant positive impacts on entrepreneurial intentions, competency development, and startup creation rates, particularly when programs employ practice-oriented pedagogical approaches, maintain intensive mentoring relationships, and integrate sustained engagement with real market conditions.

However, substantial challenges persist in PBEL implementation and scaling, including curriculum design difficulties integrating venture-specific learning into standardized degree structures, faculty development requirements exceeding institutional capacity in many contexts, resource constraints limiting program scope and intensity, and fundamental barriers to new venture sustainability operating largely outside educational control. These challenges are not merely implementation problems but reflect deeper tensions between educational institutions' standardization requirements and entrepreneurship's inherent unpredictability, between faculty development timelines and the technical expertise required, and between the high-touch personalized support characterizing successful programs and the scalability demands of mass higher education.

The path forward requires integrated attention to multiple dimensions. Institutional research priorities should emphasize longitudinal studies systematically tracking student entrepreneurs across extended periods, comparative analyses documenting which pedagogical and organizational features most effectively support sustainable startups, and investigation of emerging technological capabilities for enhancing PBEL quality and accessibility. Faculty development infrastructure must be expanded and systematized, with particular investment in specialized preparation for entrepreneurship-focused teaching and mentoring. Institutional policies and structures should be deliberately redesigned to support venture-embedded learning, including creative approaches to academic credit, intellectual property arrangements, and strategic coordination across institutional units.

PBEL's contribution to entrepreneurship education extends beyond its direct impact on startup creation to its broader influence on how higher education conceptualizes learning, engages with external communities, and prepares students for the increasingly entrepreneurial orientation of contemporary careers. As institutions integrate PBEL approaches, attention to evidence-based implementation, sustained investment in faculty and infrastructure, and ongoing evaluation and adaptation will determine whether PBEL fulfills its potential to meaningfully advance both entrepreneurship education and higher learning more broadly.

References

1. Nabi, G., Liñán, F., Fayolle, A., Krueger, N., & Walmsley, A. (2017). The impact of entrepreneurship education in higher education: A systematic review. *Academy of Management Learning & Education*, 16(2), 277-299.
2. Project-based Learning and Entrepreneurship in Small Schools. *Journal of Adventist Education*, 84(3), 8-12.
3. Science Publishing Group. (2025). The application of blended learning in innovation and entrepreneurship education. *Journal of Education*, 14(5), 16.
4. Bhatnagar, N., et al. (2022). Quality evaluation of entrepreneurship education in higher education institutions. *PMC National Center for Biotechnology Information*. PMC9563852.
5. Project-Based Learning in Teaching Entrepreneurship. (2021). *EAI Digital Library*.
6. Maritz, A. (2011). Blended learning in entrepreneurship education. *Swinburne University of Technology*.
7. Lackéus, M. (2021). How entrepreneurship education at universities influences entrepreneurial intention and behaviour. *Frontiers in Psychology*, 12, 655868.
8. Ratkovic, S., Slogar, S., & Sokcevic, M. (2023). Entrepreneurial competencies of university students. *Economics and Sociology*, 16(1), 223-243.
9. Ferreras-Garcia, R., Hernández-Lara, A., & Serradell-López, E. (2021). Developing entrepreneurial competencies in higher education. *Journal of Entrepreneurship Education*, 24(1), 1-24.
10. Chen, X., & Tang, Y. (2022). The mediating effect of entrepreneurship education on self-efficacy and entrepreneurial competencies. *Journal of Innovation & Knowledge*, 10(1), 45-67.
11. Project-Based Learning and Entrepreneurship in Small Schools. *Journal of Adventist Education*, 84(3), 8-12.
12. Motta, V.F. (2023). Experiential learning in entrepreneurship education: A systematic

literature review. *Teaching and Teacher Education*, 129, 104-115.

13. Project-Based Learning in Teaching Entrepreneurship. (2021). *EAI Digital Library*.

14. Science Publishing Group. (2025). The application of blended learning in innovation and entrepreneurship education. *Journal of Education*, 14(5), 16.

15. Thompson, N.L., et al. (2023). A comparison of online, blended, and face-to-face learning. *Journal of Educators Online*, 23(2), 50-68.

16. Okanazu, O. (2017). Blended learning approach to entrepreneurship education in tertiary institutions. *Journal of Technical Vocational Education and Training*, 2(2), 24-42.

17. Forde, C., et al. (2024). Comparing face-to-face, blended and online teaching methods. *Frontiers in Medicine*, 11, 1180044.

18. Thompson, N.L., et al. (2023). A comparison of online, blended, and face-to-face learning. *Journal of Educators Online*, 23(2), 50-68.

19. Science Publishing Group. (2025). The application of blended learning in innovation and entrepreneurship education. *Journal of Education*, 14(5), 16.

20. Lackéus, M. (2021). How entrepreneurship education at universities influences entrepreneurial intention and behaviour. *Frontiers in Psychology*, 12, 655868.

21. Emory University. (2019). University incubators present growth opportunities for startups. *AI Emory Research Articles*.

22. Motta, V.F. (2023). Experiential learning in entrepreneurship education: A systematic literature review. *Teaching and Teacher Education*, 129, 104-115.

23. Rideout, E.C., & Gray, D.O. (2013). Does entrepreneurship education really work? A review and methodological critique. *Journal of Small Business and Enterprise Development*, 20(1), 14-37.

24. Lackéus, M. (2021). How entrepreneurship education at universities influences entrepreneurial intention and behaviour. *Frontiers in Psychology*, 12, 655868.

25. Maritz, A. (2011). Blended learning in entrepreneurship education. *Swinburne University of Technology*.

26. Emory University. (2019). University incubators present growth opportunities for startups. *AI Emory Research Articles*.

27. Retainr. (2025). 7 innovative e-learning platforms for startup founders. *Retainr Blog*.

28. Shirokova, G., et al. (2023). Building an experiential learning startup. *Northeastern D'Amore-McKim News*.

29. Highereduhr. (2021). Startup incubator cum centre of excellence. *Higher Education Review India*.

30. SPJIMR. (2025). Experiential learning for entrepreneurs. *SPJIMR Entrepreneurship Program*.

31. Emory University. (2019). University incubators present growth opportunities for startups. *AI Emory Research Articles*.

32. Rice Business. (2025). Entrepreneurial mindset: Rice MBA entrepreneurship resources. *Rice University*.

33. Mody University. (2023). Issues, challenges and mitigation on entrepreneurship development in India. *FDP Report*.

34. Shekhar, G., et al. (2023). Role of incubation centers in educational institutions. *Journal of Incubation and Entrepreneurship Research*, 6(2), 123-145.

35. Shekhar, G., et al. (2023). Role of incubation centers in educational institutions. *Journal of Incubation and Entrepreneurship Research*, 6(2), 123-145.

36. Walton, A., & Thompson, K. (2024). How industry collaborations elevate business school education. *Jagannath Institute Blog*.

37. Hou, F., et al. (2019). Model of entrepreneurial intention: University students. *Frontiers in Psychology*, 10, 916.

38. Passaro, R., et al. (2018). Comparative analysis of entrepreneurship teaching methods. *Journal of Business Research*, 91, 123-140.

39. Mukesh, K., et al. (2020). Action learning versus classroom teaching in entrepreneurship education. *International Journal of Management Education*, 18(2), 100-118.

40. Ferreras-Garcia, R., Hernández-Lara, A., & Serradell-López, E. (2021). Developing entrepreneurial competencies in higher education. *Journal of Entrepreneurship Education*, 24(1), 1-24.

41. Hou, F., et al. (2019). Model of entrepreneurial intention: University students. *Frontiers in Psychology*, 10, 916.

42. Barba-Sánchez, V., & Atienza-Sahuquillo, C. (2024). Job creation and survival among U.S. startups. *American Economic Association Conference Proceedings*.

43. Pachava, S., et al. (2025). Fostering innovation and startups in Indian universities. *Indian Research Journal of Management Studies*, 6(2), 845-865.

44. Oyebola, O., et al. (2024). Assessing the impact of entrepreneurship education degree programmes. *RSIS International Journal*, 3(7), 45-67.

45. Emory University. (2019). University incubators present growth opportunities for startups. *AI Emory Research Articles*.

46. Wahidmurni. (2019). Curriculum development design of entrepreneurship education. *Academy of Business & Administrative Sciences*, 22(3), 374-395.

47. Motta, V.F., & Galina, S. (2021). A measurement model of entrepreneurship education effectiveness based on methodological triangulation. *Journal of Business Research*, 134, 45-67.

48. Tripathy Lal, A. (2021). Faculty development program on entrepreneurship development. *FORE School of Management*.

49. IFHE. (2021). Institution innovation and startup policy. *IFHE Policy Document*.

50. Ijpesu, A., et al. (2025). Exploring entrepreneurship education in new education policy. *International Journal of Humanities and Social Science Management*, 5(1), 15-35.

51. Basu, R. (2014). Entrepreneurship education in India: A critical assessment. *Technology Innovation Management Review*, 4(6), 817-835.

52. Motta, V.F., & Galina, S. (2021). A measurement model of entrepreneurship education effectiveness based on methodological triangulation. *Journal of Business Research*, 134, 45-67.

53. Aspelund, A., et al. (2005). Initial resources' influence on new venture survival. *Journal of Business Venturing*, 20(6), 867-884.

54. Kent, K. (2023). Entrepreneurial founding conditions and the survival of new ventures. *Kent University Research Repository*.

55. Aspelund, A., et al. (2005). Initial resources' influence on new venture survival. *Journal of Business Venturing*, 20(6), 867-884.

56. Barba-Sánchez, V., et al. (2022). The entrepreneurial intention of university students. *Journal of Small Business Management*, 60(4), 874-900.

57. Coursera. (2024). Innovation & entrepreneurship mindset specialization. *Coursera Specializations*.

58. NFTE. (2025). Entrepreneurial mindset. *Network for Teaching Entrepreneurship*.

59. Motta, V.F. (2023). Experiential learning in entrepreneurship education: A systematic literature review. *Teaching and Teacher Education*, 129, 104-115.
